RF Interference Analysis

Eder EIRAS
Anritsu

Dublin, October 13th 2015

Agenda
1. Interferences
2. Measurement Techniques and Problems
3. Spectrum Analyzer Basics and Hints
4. Advanced Spectrum Analyzer Measurements
5. Anritsu Portfolio
Interferences

Indicators

7 Questions

Example: LTE and Digital Dividend

- Limited range, dropped calls, low data rate, high Bit Error Rate
- High Receiver Noise Floor

Interference is a receiver issue!

... and comes from so many sources
Q 1/7 Is It On-Channel Interference?

Factors that can cause excessive **cell overlap** and subsequent interference include:

- Antenna tilt
- Valleys
- Antennas mounted on high buildings
- Better than expected signal propagation over water
- Errors in frequency settings
- Excessive multi-path

Q 2/7. Can In-band Interference Be My Problem?

Interference is not inside the channel but inside the receiver.

Receiver bandwidth is defined by the frequency selective components present in the receiver chain like Filters, Duplexers ...

These signals can be:
- Carriers from other services
- Intermodulation products
- Harmonics of other signals
Q 3/7. Are External Sources Causing Impulse Noise

Impulse noise is created whenever a flow of electricity is abruptly started or stopped. A surprising variety of items can create impulse noise:

- Lighting suppression devices
- Electrical motors from elevators or the like
- Electric fences
- Power lines, which may arc and spark
- Light dimmers

Most of these impulse noise sources affect the lower frequencies, generally below 500 MHz. Micro-arching or fritting is the exception, since it is generated by the RF signal and can affect reception at any frequency. It is typically very broadband, measuring more than 1 GHz wide.

Q 4/7. Can Harmonics Throw My Signal Off

Harmonics are multiples of an RF carrier. For instance, if we had a transmitter at 100 MHz, it might have harmonics at 200 MHz, 300 MHz, 400 MHz, 500 MHz, and so on.
Q 5/7. Is Interference Due To Passive Intermodulation?

Happens mostly on GSM/DCS/LTE sites

If some components are non-linear, they create Intermodulation products that can fall inside the receiver band: if so, you have an Interference.

![Intermodulation Diagram]

Reflected + interference signals

Q 6/7. How Close Am I To Finding A Near-Far Problem

In the case where a wide area RF coverage is overlaid with a smaller area coverage, and the two operating frequencies are close enough to give receivers a problem, the nearby, in-band-but-off-frequency signal can overload a receiver trying to listen to the weaker signal.

The near-far problem can also happen between cell towers, as long as the mobile device can’t make a handover. This may occur when a device from one operator is broadcasting a strong signal to reach a distant cell tower. If a cell tower operated by another operator is near the mobile device, that second carrier’s receiver may be temporarily desensed by the mobile device.
Q 7/7. Is Someone Causing Intentional Interference?

Cell Phone Jammers are a problem, it is generally for civilian use illegal

Often used in:

- Cinemas
- Religious buildings
- ...

Example: LTE and Digital Dividend

Switch from Analog to Digital broadcast released some spectrum bandwidth around 800MHz.

Decision from EU was to allocate it to LTE (Band 5).

So DVB-T and LTE are adjacent in the spectrum.

Components from DVB-T infrastructure were designed to receive full 800MHz band … including the portion now given to LTE.
Measurement Techniques and Problems

Direct Connect vs Over The Air

Multipath

Antennas

Direct Connect to the receiver

Allows to directly monitor what is received by the system and nothing else

- Most accurate measurements
- Does not allow to locate the source of interference

Issue: How to do it with remote radio heads?
The migration to C-RAN

Tower Evolution

Tomorrows network
C-RAN

Current Transport Network

Remote Radio Head Unit
Optical Fiber and Power feed
Less equipment lower Power consumption
Minimum equipment lowest Power consumption
Single BBU serving multiple RRH Units
1 Gbps or 10 Gbps Ethernet link
Ethernet / SDH/SONET / OTN Network

CPRI where it fits IN – Mobile Fronthaul

- This move to centralized BBUAs creates a new domain within the mobile network.
 - The new network between the BBU and the RRH in the cell site is referred to as the fronthaul network
 - The network between the BBU and the core network is still the mobile backhaul network
Direct Connect to the receiver

Radio Remote Heads have a fiber interface, not coaxial.

The fiber is carrying a protocol stack named CPRI.

Some Anritsu RF Analyzers have an optical CPRI interface

Over the Air (OTA) Measurements

Allows to see all signals inside and outside the receiver band

- Not so accurate measurements
- Multipath Problems
- Allow to see outside the receiver
- Allows to find the direction
Multipath

This is a challenge mainly in urban areas where signal are reflected by buildings.

Direction Finding becomes challenging as there is only one emitting source but signals gets to the receiver by various paths.

Finding the source requires experience, knowledge of the antenna and principles of reflection.

Antennas

A directional antenna is an antenna which receives greater power in one or more directions. We use 2 different type of antennas:

- **Yagi**
 - Best Directivity and specs
 - Narrow Band

- **LogPeriodic**
 - Less Directivity
 - Broadband
Antennas

Directional Antennas have a radiation path that you need to take in account when doing measurements

Three main specs:

Good directivity, which means that it is easy to figure out when the antenna is pointing at the signal

Good front-to-back ratio, which means that you will not likely be misled by signals coming from exactly behind the antenna.

Generally low side lobes, which means that it’s not too likely you will be misled by signals received from a minor lobe, which would throw off the direction finding

Spectrum Analyzer Basics and Hints

Block Diagram

Internal RF Attenuator

RBW Filter

Preamplifier
Spectrum Analyzer Block Diagram

Block Diagram of a Super-Heterodyne Spectrum Analyzer

Internal RF Attenuator

- Optimum input level for mixer
 - Maximum dynamic range
 - Additional attenuation increases Noise Level
 - Minimum distortion
 - Unwanted mixing product due to high mixer input level
- Attenuator prevents overload of the input mixer
 - Attenuator range
 - e.g. 0 - 65dB
 - in 5dB Steps
 - Mechanical attenuator
- Optimum Level at the mixer input?
 - Depends on the mixer design
 - -10dBm -30dBm
 - Attenuator can prevent the mixer from damage!
Internal RF Attenuator

- Manual and automatic settings of the attenuator
 - Automatic mode
 - Always coupled to the reference level (... Semi Automatic)
 - +30dBm Ref. level = 50dB Attn (-20dBm at mixer)
 - +10dBm Ref. level = 30dB Attn (-20dBm at mixer)
 - The mixer can be saturated also in automatic mode!

The mixer also sees signals outside of the displayed spectrum!
Power at the input of the mixer is the sum of all signals!

Internal RF Attenuator

- 10dB Attn (RF Attenuator) will change Noise Level by 10dB
RBW Filter: Separation of adjacent signals

RBW filter determines the ‘signal’ resolution

RBW: 30 kHz

RBW: 3 kHz

Carriers separated by 50 kHz

RBW Filter: Minimization of Internal Noise

Sensitivity of a spectrum analyzer is limited by the internal generated noise.

Thermal Noise

Noise added by internal components (mixers, amplifier...)

Thermal Noise: $N = kTB$

N = Noise power (in Watt)

k = Boltzmann Constant (1.38×10^{-23} J/K)

T = Absolute Temperature (Kelvin)

B = System bandwidth (Hz)

Thermal Noise power:

- Bandwidth = 1kHz
 - $N = -144$dBm/1kHz

- Bandwidth = 1Hz
 - $N = -174$dBm/1Hz

The smaller the bandwidth of the RBW filter, the smaller the noise power.
Noise Level (DANL) without PreAmp

- Noise Energy from a 50 Ohm Termination
 - -174dBm/Hz (1Hz Filter)
 - Thermal Noise

Noise Energy from a 50 Ohm Termination

-174dBm (1Hz RBW)

Thermal Noise

-174dBm (1Hz RBW)

-145dBm (1Hz RBW)

29dB Noise Figure (no PreAmplifier)

Noise Level (DANL) with PreAmp

- Noise Energy from a 50 Ohm Termination
 - -174dBm/Hz (1Hz RBW Filter)
 - Thermal Noise

Noise Energy from a 50 Ohm Termination

-174dBm (1Hz RBW)

Thermal Noise

-174dBm (1Hz RBW)

-165dBm (1Hz RBW)

9dB Noise Figure! (with PreAmplifier)
Advanced Spectrum Analyzer Measurements

Time Domain Measurements

Max Hold

Save on Event

Burst Detect

Demodulations

Spectrogram

Mapping

Time Domain Measurements

Also called ‘0 Span’

Displays Amplitude vs Time (envelope of the signal)

Allows for example to identify ‘real’ GSM signals or illegal transmitters.
Max Hold Trace

Analyzers keeps displaying the highest signal (like a memory)

Allow to spot intermittent signal

You can overlay a ‘Normal’ trace with a ‘Max Hold’

Save on Event

Generate automatically a Mask or Limit Line.

A trace is automatically saved if the spectrum violates the limit.

Allows long term monitoring of intermittent interferences.
Burst Detect

Analyzers take 20,000 measurements per second

Emitters as narrow as 200 μs can be captured every time.

Limited to 15MHz bandwidth

Demodulations

Display the I/Q constellation

Decode the Cell ID

Measure the synchronization channels

…
Spectrogram

Used to monitor Spectrum Vs. Time, useful to identify intermittent interferences

Interference Mapping

Locate the source of Interference by triangulating the signal
Anritsu Portfolio

<table>
<thead>
<tr>
<th>MS2711E</th>
<th>MS2712E</th>
<th>MS2713E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>3 GHz</td>
<td>3 GHz</td>
</tr>
<tr>
<td>NRZ</td>
<td>150 kHz</td>
<td>1 MHz</td>
</tr>
<tr>
<td>PAM2</td>
<td>150 kHz</td>
<td>1 MHz</td>
</tr>
<tr>
<td>DSRL</td>
<td>-62 dBm EVM @ 10 MHz</td>
<td>-50 dBm</td>
</tr>
<tr>
<td>Power Output (RF Out, 10 MHz)</td>
<td>-9 dBm</td>
<td>-9 dBm</td>
</tr>
</tbody>
</table>

Demodulations

MS2720T

- Option 709 9 kHz to 9 GHz
- Option 720 9 kHz to 20 GHz
- Option 743 9 kHz to 43 GHz

- Option 713 9 kHz to 13 GHz
- Option 732 9 kHz to 32 GHz

Option: CPRI Interface
Demodulations

- **MS27101A**
 - ½-Rack mount single input

- **MS27102A (IP67)**
 - 1 Port (2 Port Optional)

- **MS27103A**
 - Full rack 12/24 Port